Onset of diradical character in small nanosized graphene patches.

نویسندگان

  • Jinhua Wang
  • Dmitry Yu Zubarev
  • Michael R Philpott
  • Sinisa Vukovic
  • William A Lester
  • Tian Cui
  • Yoshiyuki Kawazoe
چکیده

A family of small graphene patches, i.e., rectangular polyaromatic hydrocarbons (PAHs), that have both zigzag and armchair edges is investigated to establish their ground state electronic structure. Broken symmetry density functional theory (DFT) and plane wave DFT were used to characterize the onset of diradical character via relative energies of open-shell and closed-shell singlet states. The perfect pairing (PP) active space approximation of coupled cluster theory was used to characterize diradical character on the basis of promotion of electrons from occupied to unoccupied molecular orbitals. The role of zigzag and armchair edges in the formation of open-shell singlet states is elucidated. In particular, it is found that elongation of the zigzag edge results in an increase of diradical character whereas elongation of the arm chair edge leads to a decrease of diradical character. Analysis of orbitals from PP calculations suggests that diradical states are formally Mobius aromatic multiconfigurational systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diradical character and nonlinear optical properties of buckyferrocenes: focusing on the use of suitably modified fullerene fragments.

The buckyferrocenes, synthesized through face-to-face fusion of ferrocene and fullerene fragments (C60Me10), are expected to enjoy the rich scientific heritage of ferrocene and fullerene with an extensively large π-conjugation network between the two Fe atoms [Y. Matsuo, K. Tahara and E. Nakamura, J. Am. Chem. Soc., 2006, 128, 7154]. However, the addition of pentamethyl groups at each end of th...

متن کامل

Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.

Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (<2.5±0.2 at. %), few layer graphene nanosheets with latera...

متن کامل

Structural fluctuation governed dynamic diradical character in pentacene.

We unravel intriguing dynamical diradical behavior governed by structural fluctuation in pentacene using ab initio molecular dynamics simulation. In contrast to static equilibrium configuration of pentacene with a closed-shell ground state without diradical character, due to structural fluctuation, some of its dynamical snapshot configurations exhibit an open-shell broken-symmetry singlet groun...

متن کامل

Diradical character from the local spin analysis.

Diradical species are analyzed in light of the local spin analysis. The atomic and diatomic contributions to the overall 〈Ŝ(2)〉 value are used to detect the diradical character of a number of molecular species mostly in their singlet state, for which no spin density exists. A general procedure for the quantification of diradical character for both singlet and triplet states is achieved by using...

متن کامل

Effects of nanosized constriction on thermal transport properties of graphene

UNLABELLED Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 10(7) to 10(9) K/W at 150 K, which reduces th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 33  شماره 

صفحات  -

تاریخ انتشار 2010